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Abstract We present several approaches to use gradients
in higher degree interpolating moving least squares (IMLS)
methods for representing a potential energy surface (PES).
General procedures are developed to obtain smooth approxi-
mations of the PES and its derivatives from quasi-uniform
sets of energy and gradient data points. These methods are
illustrated and analyzed for the Morse oscillator and a 1-D
slice of the ground-state PES for the HCO radical computed
using density functional theory. Variations in the IMLS fits
with the number and distribution of points and the degree
of the polynomial fitting basis set are examined. We deter-
mine the effects of gradient inclusion on the accuracy of the
IMLS values of the energy, first and second derivatives for
two 1-D test cases. Gradient inclusion reduces the number of
data points required by up to 40%.

Keywords Interpolating moving least squares · Potential
energy surface · Polynomial fitting

1 Introduction

An accurate potential energy surface (PES) is essential for
theoretical studies of molecular and reaction dynamics. The
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option of using high-level ab initio methods has grown in
recent years because of the improved accuracy of quantum
chemistry methods and the availability of greater computing
capabilities. This is especially significant for studying chemi-
cal reactions because high-level electronic structure theory
is often required for accurate descriptions of bond breaking
and formation. We are interested in developing efficient (i.e.,
requiring a minimum of ab initio calculations), general, and
robust numerical fitting procedures for ab initio PESs that
can be automated to provide values of the energy, gradients,
and hessians with controllable accuracy.

The local PES fitting method introduced by Ischtwan and
Collins [1], which is based on modified Shepard interpola-
tion [2–6], is such a method. The unmodified Shepard method
[7,8] approximates the PES at a given evaluation point as a
weighted average of the exact values at the neighboring data
points. Larger weights are assigned to the data points closer
to the evaluation point, making the interpolation local. The
Shepard method is a simple and general method of fitting
multivariate surfaces from scattered data points, but it suffers
from the unphysical flat-spot phenomenon whereby the deri-
vatives of the interpolated surface are zero at every data point
[8]. The modified Shepard method cures this problem by fit-
ting the local Taylor expansions about the data points instead
of values alone. The Taylor expansions must at least include
second-order terms to avoid the flat-spot phenomenon in
the fitted potential and its gradient. Collins and co-workers
[9–16] have studied various aspects of fitting PESs by the
modified Shepard interpolation method and have developed
automated PES-growing procedures based on different selec-
tion criteria, such as uncertainty of the interpolated energy
[16] and importance sampling, whereby new data points are
placed iteratively in the regions of configuration space impor-
tant for the properties of interest. In particular, trajectory
sampling has been used for reactive systems to place data
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points in the dynamically important regions of configuration
space [1]; approximate vibrational energy levels and asso-
ciated wavefunctions have been calculated to bias the fit for
bound systems [13]; and quantum sampling regimes have
been developed for quantum diffusion Monte Carlo simula-
tions [15].

Attractive features of the modified Shepard approach are
its mathematical simplicity and ease of automation, but the
need of the second- or higher order derivatives cannot be
readily or inexpensively satisfied by high-level ab initio cal-
culations. To address this problem Ishida and Schatz [17,
18] suggested obtaining approximate first- and second-order
derivatives by the interpolating moving least squares (IMLS)
method [8,19–26] and using them in the modified Shepard fit.
Recently, we have studied the use of IMLS in more detail for
fitting PESs [27–32]. The IMLS method involves a basis of
polynomials up to any desired degree k. (The Shepard method
is a zeroth-degree IMLS method.) Surfaces fit by second- and
higher degree IMLS have well-behaved first and second deri-
vatives, i.e., there is no flat-spot problem and gradients and
Hessians are not required. This is an important advantage for
fitting PESs obtained by high-level ab initio calculations.

Our earlier work focused on the features of the IMLS fits of
1-D [28] and 3-D PESs [27]. These cases highlight the impro-
ved accuracy in fitted values and derivatives obtained with
higher degree IMLS. In order to improve the accuracy and
efficiency of the numerical fitting methods, we have recently
used a dual-level approach in which we fit the difference
of the exact and a reference surface [32]. This approach was
used on a 6-D PES of HOOH with two interpolation methods:
modified Shepard and second-degree (2d) IMLS. The results
demonstrated that with the dual-level approach the 2d-IMLS
and modified Shepard methods are comparably accurate in
fitting the same number of ab initio points. However, the
IMLS requires only the energy values, and not the gradients
and Hessians [32]. We have also developed several strategies
for selectively eliminating distant points, which have little or
no effect on the fitted PES, that make the fitting much more
efficient [31].

Although the IMLS methods do not require derivatives at
the data points, they can be used in the fitting. Many quan-
tum chemistry methods can compute gradients analytically
at an additional cost of 10–100% of the energy calculation
[33–36]. Available gradients can be used to improve the fit-
ting accuracy, thus requiring fewer expensive quantum che-
mistry calculations needed to fit a PES to a specified accuracy.
The present study explores several ways of fitting energy
and gradient data using IMLS. We have investigated the
benefits of gradient incorporation for two representative 1-D
potentials: the Morse oscillator (VMO) and a reactive pro-
file (VHCO) for constrained dissociation of the formyl radical
to H and CO. In earlier studies [27,28] we have examined
the quality of IMLS fits for the same VMO potential and for

a collinear cut through the analytical HN2 PES of Koizumi
et al. [37]. However, the HN2 PES is a fit by cubic splines [38].
The inherent cubic nature of the fit makes the application of
higher-than-cubic IMLS fits problematic, as the results of our
previous 1-D study indicated [28]. Thus, in the present study
we used a non-collinear cut through the HCO PES obtained
directly from electronic structure calculations.

The paper is arranged as follows. Section 2 briefly reviews
the standard IMLS method. Various approaches for incorpo-
rating gradient data in the IMLS fitting procedure are presen-
ted in Sect. 3. The weights, sampling, and model potentials
are described in Sect. 4. In Sect. 5 we describe the results of
the application of several approaches to fitting potential and
gradient data and evaluate the benefits of gradient incorpo-
ration in the IMLS. A summary and conclusions are given in
Sect. 6.

2 IMLS methods without derivatives

Let an arbitrary geometry of a polyatomic system with d
internal coordinates be specified by a vector z. We seek an
approximation of a multidimensional PES from a set of ab
initio energies evaluated at reference geometries, which will
be called data points. An approximate PES representation is
given by a linear combination of m basis functions:

Vfit(z) =
m∑

j=1

a j (z)b j (z) = bT(z) a(z), (1)

where b(z) = (b1(z), b2(z), . . ., bm(z))T is the vector of
linearly independent basis functions, and a(z) = (a1(z),
a2(z), . . ., am(z))T is the vector of expansion coefficients.
Given accurate potential energy values {V (z(i))} for a set
of n data points: {z(i), i = 1, 2, . . ., n}, the expansion coef-
ficients are determined by minimizing the weighted least-
squares error functional:

E0(z) =
n∑

i=1

w(‖z − z(i)‖)[V (z(i))− bT(z(i)) a(z)]2 (2)

where w(r) is a non-negative weight function such that
w(r → ∞) → 0. Interpolative weights have a singularity
at the origin: w(r → 0) → ∞, which ensures that IMLS
fits reproduce the PES exactly at the data points. In practice,
this singularity can be avoided [w(r → 0) → 1/ε] at some
negligible cost in interpolative rigor if ε is small enough. In
addition to these properties, both weight and basis functions
should be sufficiently smooth to ensure smooth behavior of
the interpolant Vfit(z).

The minimization conditions {∂E0/∂a j = 0} lead to the
IMLS normal equation, which can be written in a compact
matrix–vector notation [8]:

BTW(z)Ba(z) = BTW(z)f, (3)
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where B is the n × m matrix of the basis function values at
the data points,

B =

⎛

⎜⎜⎜⎝

b1(z(1)) b2(z(1)) . . . bm(z(1))
b1(z(2)) b2(z(2)) · · · bm(z(2))

...
...

. . .
...

b1(z(n)) b2(z(n)) · · · bm(z(n))

⎞

⎟⎟⎟⎠ , (4)

W(z) is the diagonal positive definite weight matrix:

W(z) = diag(w(‖z − z(1)‖), w(‖z − z(2)‖),
. . . , w(‖z − z(n)‖)), (5)

and f is the column vector of the potential energy values at
the data points:

f = (V (z(1)), V (z(2)), . . . , V (z(n)))T. (6)

Provided the number and density of data points are suffi-
cient to specify the fit, the symmetric m × m matrix S0(z) =
BTW(z)B has full rank [Rank (S0(z)) = m] and the solution
of Eq. (3) is:

a(z) = S−1
0 (z)BTW(z)f . (7)

In the case of the zero-degree IMLS, the solution is very
simple and is given by the Shepard formula:

Vfit(z) = a1(z) =
∑n

i=1w(‖z − z(i)‖)V (z(i))∑n
i=1w(‖z − z(i)‖) . (8)

This simplicity carries over to the modified Shepard method,
which uses the same formula for the fitted PES but the V (z(i))
values are replaced with the estimate of V (z)by the local Tay-
lor expansions about z(i). In this study, we have examined the
usual quadratic modified Shepard method (hereafter deno-
ted m-Shepard) in comparison with IMLS fits of different
degrees.

Higher degree IMLS fits require an inverse of the S0(z)
matrix to be evaluated at every point. In practice, a direct
inversion of matrix S0(z) can lead to severely ill-conditioned
numerical problems; thus, the normal equation is solved by
QR or singular value decomposition (SVD) techniques.
These methods have several advantages including treating the
rank-deficient case and improved numerical conditioning.

Chemical applications often require approximate first- and
second-order derivatives of the PES. Differentiation of
Eq. ((1)) leads to the following expressions for the first deri-
vatives of the fitted potential (∂k = ∂/∂zk, k = 1, 2, . . . , d):

∂k Vfit(z) = ∂kbT(z)a(z)+ bT(z)∂ka(z). (9)

The derivatives of the IMLS coefficients can be derived
by differentiating Eq. (3):

S0(z)∂ka(z) = BT(∂kW(z))[f − Ba(z)]. (10)

Since Eqs. (3) and (10) have the same matrix S0(z) =
BTW(z)B on the left-hand side, SVD or QR decompositions
performed to solve Eq. (3) can be reused in the calculation of
∂ka(z). Similarly, differentiating Eq. (10) leads to an expres-
sion for the second derivative that reuses the matrix decom-
position.

While the derivatives of IMLS fitted functions can be
exactly calculated at an additional cost of evaluating the deri-
vatives of IMLS coefficients, others such as Farwig [5] and
Levin [25] have recommended the computationally simpler
one-term derivative approximation:

∂k Vfit(z) ≈ ∂kbT(z) a(z), (11)

which ignores the second term in Eq. (9). If the constant term
is included in the basis (e.g. b1(z) = 1) and the interpolative
weight function is used, then vector ∂ka(z(i)) is orthogonal
to the vector of basis functions at the data points (see Appen-
dix). By continuity, the missing (bT∂ka) term in Eq. (9) is
negligibly small in the local neighborhood of data points.
The “one-term” derivative approximation then just assumes
that it can be ignored globally. This approximation can be
systematically extended to the higher order derivatives. For
example, approximate second derivatives are expressed as:

∂ j∂k Vfit(z) ≈ (∂ j∂kbT(z)) a(z). (12)

Using the sample 1-D PES fits described in Sect. 4, we will
show that Eqs. (11) and (12) do in fact provide good approxi-
mations of the first and second derivatives, respectively.

3 IMLS methods with incorporation of derivatives

As in the standard procedure, we define the fit in the form of
Eq. (1) but, in addition to minimizing the errors in the fitted
function [Eq. (2)], we also want to minimize the weighted
errors in each of its gradient components (k = 1, 2, . . . , d):

Ek(z) =
n∑

i=1

wk(‖z − z(i)‖)[∂k V (z(i))− ∂kbT(z(i)) a(z)]2.

(13)

In general, different weight functions can be used for different
gradient components. However, here we will consider the
same functional form wk(r) = w(r) for simplicity.
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In order to fit the PES and its gradient simultaneously, the
IMLS coefficients are determined by minimizing the combi-
ned error functional E(z) that incorporates both energy and
gradient data:

E(z) =
d∑

k=0

λ2
k(z)Ek(z), (14)

where λk(z)’s are positive factors that scale the weighted
errors for individual surfaces and make each term in the com-
bined error functional independent of physical units. Multi-
plying Eqs. (2) and (13) by scaling factors does not affect the
minimization of individual error functionals, but λk’s control
relative fitting accuracy for different surfaces in multi-surface
fitting. Depending on the fitting preferences, the choice of
scaling factors is not unique. In chemical applications, accu-
rate representations of the PES and its derivatives are typi-
cally required. Also, available ab initio data (both energies
and gradients) are of high numerical precision. Taking this
into account we put two constraints on the selection of λk’s.
The first is that at each data point, the fit should recover
both the value and the derivatives at the data points. Once
the first constraint is met, the second constraint is that to the
degree possible, λk’s must be selected to minimize fitting
error.

Concerning the first constraint, the IMLS basis always
includes a constant basis function, i.e., b1(z) = 1, whose
derivative is zero. The coefficient of that basis function has
no effect on the functionals in Eq. (13) but does affect the
E0 functional of Eq. (2). As such, that coefficient alone is
determined independently of scaling factors in a way that
ensures that the IMLS fit reproduces energy data values. If
λk/λ0(k = 1, 2, . . . , d) is then large enough so that the func-
tionals of Eq. (13) dominate the combined functional, then
it is straightforward to show that the derivative data will be
recovered by the fit. Thus the effect of the first constraint is to
require λk/λ0(k = 1, 2, . . . , d) be large enough to reproduce
gradients at the data points.

With regard to the second constraint of minimizing the
fitting error, there is no simple and general implication for
λk’s that can be derived. Having tried several choices, we
selected one of the simpler definitions of λk’s in terms of the
dynamic ranges for the potential and its derivatives estimated
from the data points used to define the fit:

λ−1
0 = max{V (z(i))} − min{V (z(i))},
λ−1

k = max{∂k V (z(i))}−min{∂k V (z(i))}, k =1, 2, . . . , d.

(15)

Our test calculations showed that scaling factors defined
by Eq. (15) allow the recovery of the potential and derivatives
at the data points while also being near-optimal for minimi-
zing root-mean-square (rms) fitting errors.

The minimization conditions {∂E/∂a j = 0} lead to the
modified normal equation:

[
λ2

0(z)B
TW(z)B +

d∑

k=1

λ2
k(z)∂kBTW (z)∂kB

]
a(z)

= λ2
0(z)B

TW(z)f +
d∑

k=1

λ2
k(z)∂kBTW(z)∂kf, (16)

where matrices B and W(z) and vector f were defined earlier
by Eqs. (4)–(6), matrix ∂kB contains the kth partial derivative
values of the basis functions at the data points:

∂kB =

⎛

⎜⎜⎜⎝

∂kb1(z(1)) ∂kb2(z(1)) . . . ∂kbm(z(1))
∂kb1(z(2)) ∂kb2(z(2)) · · · ∂kbm(z(2))

...
...

. . .
...

∂kb1(z(n)) ∂kb2(z(n)) · · · ∂kbm(z(n))

⎞

⎟⎟⎟⎠ , (17)

and ∂kf is the kth component of the gradient at the data points:

∂kf = (∂k V (z(1)), ∂k V (z(2)), . . . , ∂k V (z(n)))T. (18)

Equation (16) is a simple generalization of Eq. (3) and can
be solved in an identical way.

Higher order derivative data can be incorporated in the
IMLS fits in a similar way. We will denote as IMLS-D(ν) an
IMLS fit that incorporates both energy and derivative data up
to order ν. The work involved in the solution of the resulting
normal equation is proportional to the total effective number
of data values. For example, constructing the global IMLS-
D(2) fit of n energy, nd gradient, and nd(d + 1)/2 Hessian
values for a d-dimensional PES will cost (1 + 1.5d + 0.5d2)

times the cost of fitting energy values alone (the IMLS-D(0)

fit). With cutoffs in the weight functions, however, the effec-
tive local value of n might very well decrease as higher order
derivatives are added, perhaps amply compensating for the
additional work required.

Others, e.g., Xie and Bowman [39], have incorporated
gradients into global least-squares fits by generating addi-
tional “shadow” points in the neighborhood of the original
(exact) data points via a finite difference approximation. The
main advantage of generating shadow points rather than fit-
ting the derivative values directly is that the derivatives of
the basis functions are not required. However, choosing an
appropriate finite differencing step size can be difficult to
select for general application. Furthermore, if central diffe-
rencing is involved, more than one shadow point is genera-
ted per derivative value, increasing the cost of constructing

123



Theor Chem Account (2007) 118:755–767 759

Table 1 Summary of tested potentials

Potentials VMO(z) VHCO(z)

Definition VMO(z) = De[1 − exp(−β(z − z0))]2 1-D slice of the HCO PES a

Constants β = 2a−1
0 , De = 100 kcal/mol, z0 = 2a0 � HCO = 170◦; RC−O = 2.1a0

Variables 1.653 ≤ z/a0 ≤ 4.725 z = RC−H, 1.4 ≤ z/a0 ≤ 4.472

Dynamic 0 ≤ VMO/(kcal mol−1) ≤ 100.3 2.3 ≤ VHCO/(kcal mol−1) ≤ 101.3

Ranges −802 ≤ V ′
MO/(kcal mol−1a−1

0 ) ≤ 100 −433 ≤ V ′
HCO/(kcal mol−1a−1

0 ) ≤ 36

Data sets Nested grids of n = 5, 9, 17, 33, 65, 129, and 257 equidistant data points grid of N = 1025 equidistant evaluation points

a Calculated at the B3LYP/6-311G(d,p) level of theory

and solving the IMLS normal equation relative to the direct
approach.

4 Computational details

In this section we describe in order the PESs used to eva-
luate gradient incorporation, the basis set used in the IMLS,
the weight function used in the IMLS and comparative
modified Shepard calculations, and the data point selection
schemes.

4.1 PES test cases

In order to evaluate various approaches to the incorporation
of gradient data in the IMLS framework and better unders-
tand the properties of the interpolated potentials obtained by
different methods, we have examined their performance for
two representative 1-D potentials: the Morse oscillator (MO)
potential and a reactive profile for constrained dissociation
of the HCO radical to H and CO calculated at the B3LYP-
DFT/6-311G(d,p) level of theory [40–43] with the Gaussian
03 program package [44]. Table 1 contains detailed para-
meters and characteristics of the tested potentials. The exact
potentials and their first- and second-derivatives are shown
in Fig. 1.

The Morse oscillator is chosen as a simple model of an
anharmonic potential with a monotonic dissociation path,
whereas the 1-D slice of the HCO PES represents a more
complex dissociation path featuring an intermediate and a
barrier. The latter was selected because there is a substan-
tial barrier separating the HCO intermediate from H + CO
products (see Fig. 1a). The HCO potential calculated at the
B3LYP-DFT level of theory, while less accurate than some
published HCO results [45,46], is representative of PES data
generated directly by electronic structure calculations and
thus an appropriate test case for our purpose. We have tho-
roughly and systematically tested the accuracy of different
degree IMLS fits with and without gradient data, using root-
mean-square (rms) errors in the fitted potential, gradient, and

second derivatives calculated on a dense set of N = 1, 025
evaluation points.

4.2 Basis set

We have used a standard polynomial basis as in our previous
study [28] of 1-D applications of the IMLS method. We use
the kd-IMLS notation when referring to the kth-degree IMLS
fit, which by definition is constructed from the monomials
of total degree less than or equal to k. In the 1-D case, the
kd-IMLS basis contains m = k + 1 monomials: b1(z) =
1, b2(z) = z, . . ., bm(z) = zk . Here we examined 1-D IMLS
fits of up to fourth degree (k = 1, 2, 3, 4), taking the basis
functions to be monomials shifted to the evaluation point, as
suggested by Levin [25]. This choice of basis requires the B
and ∂1B matrices to be recalculated at every evaluation point,
but it allows us to avoid large numbers in these matrices and
simplifies Eq. (1) to Vfit = a1, since bT = (1, 0, . . . , 0).

4.3 Weight function

In earlier work we examined several weight functions in
conjunction with polynomial bases. Recently, we [31] and
others [25] have analyzed in more detail cutoff strategies to
make the fitting procedure more efficient by excluding remote
data points that do not influence the accuracy of IMLS fits.
These cutoff studies suggest a weight function of the form:

w(ri ) = s(r2
i /R2

cut)wplain(ri ), (19)

where s(x) is a smooth damping function, such as:

s(x) =
{

exp(−x/(1 − x)) if 0 ≤ x < 1,
0 if x ≥ 1,

(20)

and where ri = ||z − z(i)|| is the distance between the eva-
luation point z and the i th data point (i = 1, 2, . . ., n), Rcut

is a cutoff radius, and x = (ri/Rcut)
2. For a wplain of infi-

nite extent, the damping function s (x) makesw go smoothly
to zero at ri ≥ Rcut so that only those data points that are
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Fig. 1 a Values, b first and c second derivatives of the tested 1-D
potentials

enclosed by Rcut are used to locally define the fit. To imple-
ment a cutoff strategy, one must have a method to determine
Rcut. The simplest method, which is still shown to be effec-
tive [31], is to set Rcut to a fixed value, i.e., the Fixed Radius
Cutoff (FRC) method, and we use it here. To apply Eq. (19)
we must specify wplain and Rcut.

The wplain we use is adopted from the form suggested by
McLain [19–22]:

wplain(ri ) = exp[−r2
i /ζ

2
i ]

(r2
i /ζ

2
i )

p + ε
, (21)

where p is an integer, p ≥ 1, ζi is a point-specific density
adaptive parameter, and ε is a small positive number that
prevents a numerical failure when ri → 0 and controls the
dynamic range of weights. Lower p-values lead to smoother
and globally more accurate fits; p = 1 was used here. The
value of ε = 1.e − 7 used here allows accurate reproduction
of function values at the data points, while typically limiting
the ratio of the largest to the smallest influential weight to
less than 1016, for numerical stability. The value of ζi controls
how rapidly remote points are attenuated. Our numerical tests
showed that accurate fits can be obtained by relating ζi ’s to

< hi >, the average data point spacing in the neighborhood
of z(i), which can be defined such that nlocal < hi > gives
the length of the interval including z(i) and its nlocal nearest
neighbors. Here we used nlocal = 4 to fit 1-D PESs with up to
fourth degree polynomials. Then ζi is < hi > for IMLS and
< hi >/2 for IMLS-D(1). The lower value of ζi for IMLS-
D(1) reflects the fact that incorporating derivatives allows a
more attenuated local area to provide as accurate a value for
the PES as a more extensive local area in IMLS without deri-
vatives. With the ζi ’s set to unity, Eq. (21) is similar to other
weight functions we have tried in previous IMLS studies.
Those weight functions however had higher values of p to
achieve sufficiently fast decay rates at long distances. Point-
specific ζi ’s in Eq. (21) add more flexibility to the weight
function because they allow the weight to adjust the long-
range decay rate in direct response to the local density of
points. The value of p can be selected to better control
the short-range decay rate and the nature of singularity at
ri = 0. Smaller values of p give slower short-range decay
rates, which in combination with density adaptive long-range
decay controlled by the exponential factor in Eq. (21) give
smoother and more accurate global fits. We use the minimal
integer value allowed, p = 1. The fixed value of Rcut we use
is:

Rcut = (nlocal + 1)max{< hi >}. (22)

This definition together with the procedure used to evaluate
point-specific < hi >’s guarantee that at least five energy
data values are available to locally define up to 4d-IMLS fit
at every point z: min {z(i)} ≤ z ≤ max{z(i)}. In general,
if nlocal ≥ k then the definitions of < hi >’s and Rcut

given here guarantee that at least (k + 1) data points have
non-vanishing weights and can be used to locally define the
kd-IMLS fit using either equidistant or non-uniform data
points.

4.4 Data point selection

Data point selection has been done by two different sampling
methods: nested grids (GRID) and iterative automatic point
selection (APS). The GRID method places data points on a
series of nested grids with a mesh size progressively halved,
starting with a coarse grid of nmin = 5 and finishing with a
fine grid of nmax = 257 equally spaced data points. The same
sets of data points are then used for all tested fitting methods.
The GRID method allows systematic improvement in fitting
accuracy by increasing the number of data points, although it
is rather inefficient. Note that the rms errors are defined on a
grid of 1,025 points, i.e., four times finer than the finest grid
used in defining the ab initio points. Since IMLS fits have
vanishingly small errors at the ab initio points included in
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the fit, ever finer nested grids will by construction drive the
rms error towards exceedingly small values.

An efficient data selection algorithm should place new
data points in the regions where the fitting error is the largest.
It is known that the IMLS fitting error is bounded in terms of
the error of a local best polynomial interpolation [25], which
in turn correlates with the variation between fits by different
degree polynomials. While the fitting error is unknown a
priori, a reasonable determination of where the fitting error
is large can be made by finding where the difference between
contending IMLS fits of different degree is the largest. We
have used this approach to good effect in 1-D and higher
applications of the standard IMLS method [28,30] and we
use it here. Briefly, starting from nmin = 9 equally spaced
seed points, new data points were added iteratively (one at
a time) from a dense global ensemble of evaluation points.
For the kth-degree IMLS fit, each new data point was selected
where the difference between the (k−1)th and kth-degree fits
was the largest. The APS procedure was terminated when the
maximum number of data points (nmax = 257)was reached.

5 Test Calculations

In this section we examine the efficacy of including gradients
along with values in an IMLS fit. The accuracy of the fit with
respect to both its values and its derivatives will be exami-
ned. As discussed in Sect. 2, others have suggested approxi-
mations to the IMLS derivatives that are less expensive to
evaluate. Since this is germane to our tests of the efficacy of
incorporating gradients into IMLS fits, we will first examine
these approximations. The rest of this section will display
our evaluation of gradient incorporation.

5.1 IMLS derivative approximation

As mentioned in Sect. 2, the derivative of the IMLS fit [see
Eq. (9)] has two terms, the first involving the derivatives of
the basis functions and the second involving the derivatives
of the IMLS coefficients. Others [5,25] have suggested that
a useful approximation to the derivative of the IMLS fit is
to set the second term to zero. There are two limits in which
this is an excellent approximation: (1) when the vector of the
derivatives of the IMLS coefficients ∂a is orthogonal to the
vector of basis functions b, and (2) when a is constant. The
first limit is approached when n, the number of data points, is
very large. One can show that vectors ∂a and b are orthogonal
at the data points (see Appendix). As the density of data points
increases with n, the (bT∂a) term eventually becomes vani-
shingly small. The second limit is reached when the largest
possible basis is used to fit limited data. For example, a mini-
mum of k +1 data points is needed to define the kd-IMLS fit
of a 1-D potential. In that limit the weight function becomes

10 100

0

5

10

15

20

25(a)

(S
M

R
'

V
mret-2
-

'
V

mr et-1
lo

mlack/)
1-

a 0-1

n

 2d-IMLS
 4d-IMLS

1.5 2.0 2.5 3.0

-800

-600

-400

-200

0

200(b)

V
'

O
M

lo
mla ck/

1 -

z(a
0
)

 data points
 exact V'

MO

 2d-IMLS (2-term)
 2d-IMLS (1-term)

a 0-1

Fig. 2 V ′
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irrelevant and the least squares solution produces a globally
constant a. These two limits are illustrated in Fig. 2a for 2d-
and 4d-IMLS fits for the MO case. In Fig. 2a the (bT∂a) term
measured as the rms difference between Eq. (9) and (11) eva-
luations of the IMLS derivative is plotted as a function of n
for the GRID selection of data points. The rms representation
of the (bT∂a) term is essential zero for the minimum number
of data points needed to determine the fits, nmin = 3 and
5 for 2d- and 4d-IMLS, respectively. The largest difference
between the one- and two-term IMLS derivative approxima-
tions is reached at n = 9 and it is decreasing toward zero
as n grows large. Figure 2b shows the exact derivative and
the computed derivatives by both Eqs. (9) and (11) over a
partial range of z for n = 17. Eight of the 17 data points are
found in this limited range of z and are indicated in the plot.
The plots show that Eq. (11) typically produces an approxi-
mate derivative that is somewhat smoother than the exact
IMLS derivative. Because of the absence of oscillations the
approximate IMLS derivative is on average in better agree-
ment with the true derivative than the exact IMLS derivative.
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Quite apart from the question of the error in the approxi-
mation relative to the exact IMLS derivative is the question of
the error relative to the exact derivative on the true potential.
The IMLS is itself an approximation to the true potential.
An approximation such as Eq. (11) to the IMLS approxi-
mation can conceivably be in better agreement with the true
derivative, as is seen in Fig. 2b. In Fig. 3 the rms error rela-
tive to the true derivative is shown as a function of n for
IMLS derivatives calculated by the 1-and 2-term expressions,
Eqs. (11) and (9), respectively. As in Fig. 2, the results are for
nested grids and IMLS fits that do not incorporate gradients.
The two panels of the figure represent our two test cases. As
expected, the quality of the V ′ calculated by either method
clearly improves with increasing degree of IMLS. However,
the 1-term expression systematically gives a slightly better
approximation whose superiority increases with increasing
n or with decreasing IMLS degree.

One way to rationalize these results is as follows. The
exact IMLS is “pinned” to each data point. The approxima-
tion of Eq. (11) if integrated from one data point to another
would not be so closely pinned to the second data point. In
other words, a fit constructed out of the integration of Eq. (11)
fails to reproduce the accuracy of the exact IMLS at each data

point but with the advantage of a “smoother” derivative as
seen in Fig. 2b. By trading off accuracy at data points for
derivative smoothness the integrated fit achieves somewhat
greater derivative accuracy than the exact IMLS whose pin-
ning at each data point is achieved by a more rapidly varying
derivative between data points. The results in Fig. 3 show that
the 1-term Eq. (11) provides an efficient and more accurate
derivative approximation for both tested potentials. Although
the results in the figure are for IMLS calculations that do not
incorporate gradients, gradient incorporation does not quali-
tatively change the conclusions of the figure. In the following
discussion the derivatives of IMLS-fitted PESs are calcula-
ted by Eq. (11) unless otherwise stated. Similarly, we have
adopted a simple 1-term Eq. (12) to approximate the second
derivatives of the potential. Their quality will be discussed
in the next section.

Broader applications of the approximations of Eqs. (11)
and (12) as well as the underlying reasons for their superior
accuracy will require more study. While trajectory calcula-
tions seem an ideal application for Eq. (11), energy conserva-
tion, determination of product state distributions, and
semiclassical eigenstate determinations all require both
energies and derivatives. One potential problem that can be
readily seen involves the geometry optimization on the fitted
PES. Low-quality IMLS fits often have spurious minima and
saddle points. For example, the exact 2d-IMLS derivative
shown in Fig. 2b has three zeroes corresponding to two local
minima separated by a small barrier, whereas the true deriva-
tive and the approximate one-term IMLS derivative [Eq. (11)]
have only one zero that corresponds to the global minimum
of VMO. In this situation, geometry optimizations on the fit-
ted PES using energy-only methods and conjugate-gradient
methods will converge to different structures if the gradients
are approximated by Eq. (11). Clearly, the implications of the
inconsistency of derivatives via Eq. (11) and IMLS energies
can be serious and require further systematic study. Howe-
ver, this inconsistency becomes negligibly small for more
accurate IMLS fits using higher degree basis and denser sets
of data points, as illustrated in Fig. 2a. Applications using
IMLS fitted PESs should ensure sufficiently high quality of
fits to avoid potential complications.

5.2 IMLS fits of energy and gradient data

The contrast in rms errors for the fitted potentials and their
derivatives for IMLS with and without gradient incorporation
is displayed in Figs. 4 and 5 for the two tested potentials: VMO

and VHCO. The rms errors are plotted as a function of n in
the GRID mode of data point selection. Each figure has four
panels for representing the results of 1d-, 2d-,
3d-, and 4d-IMLS and IMLS-D(1) fits. The two figures show
that, with the exception of the derivative for 1d-IMLS-D(1),
incorporation of gradients lowers the rms error with respect
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Fig. 4 RMS errors for VMO (solid lines) and V ′
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by the a first, b second, c third, and d fourth degree IMLS (open squares),
IMLS-D(1) (filled squares) and modified Shepard (stars) methods. Data
points were selected by the GRID method

to the true PES. The results show the lowering of rms error is
comparable for both value and derivative. With the excep-
tion of 1d-IMLS results where incorporating gradients causes
minimal improvements or degradations in rms errors, all
higher degree IMLS results show roughly comparable rela-
tive improvement in rms error. As expected, increasing the
degree of IMLS systematically lowers the rms errors. In
panels (b) and (c) of both Figs. 4 and 5, the modified Shepard
fit is displayed as a function of n. To calculate this fit, each
of the n data points supplies the computed value, gradient,
and Hessian. As one can see in both Figs. 4 and 5 in panel
(c), a 3d-IMLS-D(1) fit which involves no Hessians is super-
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Fig. 5 RMS errors for VHCO (solid lines) and V ′
HCO (dotted lines) fitted

by the a first, b second, c third, and d fourth degree IMLS (open squares),
IMLS-D(1) (filled squares) and modified Shepard (stars) methods. Data
points were selected by the GRID method

ior in accuracy for both value and derivative to the modified
Shepard fit. Comparison of panels (b) and (d) with panel (c)
shows that 4d-IMLS and 4d-IMLS-D(1) fits are superior to
modified Shepard while all 2d- and 1d-IMLS fits are not. In
Fig. 6, the rms error of various 2d-, 3d-, and 4d-IMLS fits for
the second derivative are compared as a function of n for the
MO test case in panel (a) and the HCO test case in panel (b).
The results are quite consistent with Figs. 4 and 5. Incorpora-
ting gradients improves the rms error by comparable relative
amounts for each degree IMLS. Improving the degree syste-
matically improves the error. By the 3d-IMLS the rms error
becomes comparable or superior to modified Shepard.
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Figure 7 shows the effect of gradient data incorporation at
the 3d-IMLS level using the APS mode of data point selec-
tion. The rms errors in the fitted energies and derivatives are
displayed as functions of the number of APS data points.
Panels (a) and (b) are for the MO and HCO cases, respecti-
vely. In both panels the modified Shepard result is shown as a
function of the number of data points selected via the GRID
method. The modified Shepard results are identical to those
in Figs. 4 and 5 and thus provide a convenient reference to
gauge the impact of APS over GRID data point selection. The
results in the figure, although less smooth, display the same
qualitative trends as in Figs. 4 and 5. With respect to GRID
selection, rms error is somewhat improved by APS. In parti-
cular, the modified Shepard results are equaled or surpassed
by both 3d-IMLS-D(1) and 3d-IMLS. We observed similar
effect of gradient data incorporation at the 4d-IMLS level.
However, at lower levels (1d, 2d) of IMLS the convergence
of APS is rather slow, especially for the derivative fits, which
can be attributed to a poor quality of fitted derivatives at the
low levels of IMLS.

A goal of this study is to estimate how many extra energy
data points a derivative value is worth for improving the qua-
lity of fit. In Figs. 4 and 5 every symbol on a curve represents
a factor of two increase in n. If an IMLS-D(1) rms error for
some ni in any panel of Figs. 4 and 5 were to equal the IMLS
rms error for 2ni , then each gradient in the IMLS-D(1) fit
does the “work” of one energy value in the IMLS fit. An
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Fig. 7 RMS errors for a VMO and V ′
MO, b VHCO and V ′

HCO fits by
3d-IMLS and 3d-IMLS-D(1) as functions of the number of data points
selected using the APS method. For comparison, comparable results of
the modified Shepard method are shown as a function of the number of
data points selected via the GRID method

examination of Figs. 4 and 5 shows that occasionally this
limit is achieved, however, more often a derivative is worth
two-thirds of an extra energy point. For many electronic
structure methods, calculating all the gradients costs about
as much as another energy calculation. For such methods,
the results in Figs. 4 and 5 suggest calculating more energy
values would be the most efficient approach to an accu-
rate PES fit. However, this is a 1-D test case. These results
are encouraging for multi-dimensional applications, even for
2-D. For those few electronic structure methods [36] where
all the gradients cost only 10% that of computing a new
energy, even in one-dimensional applications incorporating
gradients is more efficient.

Because the results in Fig. 7 are not as smooth, it is diffi-
cult to apply the same analysis used immediately above for
Figs. 4 and 5. To get a more realistic estimate we constructed
the fits for VMO and VHCO using the same APS procedure as
in Fig. 7 but with a termination when the rms difference bet-
ween the contending IMLS fits reached selected values. We
use two kinds of rms differences: one is the rms difference
in energy and the second is the rms difference in derivative.
The number of data points at termination with IMLS ver-
sus IMLS-D(1) tells us the effect of gradient incorporation
in the APS data selection mode. These results are represen-
ted in Fig. 8 where panels (a) and (b) refer to the APS fits
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an IMLS-D(1) fit and the percentage reduction in this number relative
to that required for an IMLS fit with the same basis. Solid symbols and
lines are for the MO test case, while open symbols and dashed lines
are for the HCO test case. As described in the text, fitting accuracy for
APS termination is measured by the rms difference between conten-
ding fits. In a the APS was terminated when the rms(V ) difference
dropped below 0.2 kcal/mol (squares); 0.02 kcal/mol (triangles), and
0.002 kcal/mol (circles). In b the APS was terminated when the rms(V ′)
difference dropped below 2.0 kcal/(mol ao) (squares); 0.2 kcal/(mol ao)

(triangles), and 0.02 kcal/(mol ao) (circles)

terminated upon reaching the required accuracy limits in
energy, and gradient, respectively. This figure shows that
incorporating gradients improves the convergence of the APS
energy and derivative fits by about 20–40%, which is compa-
rable to the results obtained by the GRID method. Panel (b)
shows only 3d and 4d IMLS results, because the convergence
of 2d-IMLS APS derivative fits is slow due to the relatively
poor quality of fitted derivatives at the 1d-IMLS-D(1) level.
The result is large rms differences between the contending
1d- and 2d-IMLS fits.

6 Conclusions

We have combined ab initio gradient information with energy
values to fit 1-D potentials using the interpolated moving least

squares method. We have systematically compared results for
various-order IMLS and the modified Shepard approaches.
We have also applied an automatic point selection method to
improve the accuracy of the IMLS fit. For the 1-D potentials
using either APS or GRID data points the values of two or
three gradients are on average comparable to an additional
energy value in terms of the quality of the resulting IMLS fit.
Since many electronic structure methods can calculated the
full gradient vector in at least the time it takes to compute
a scalar energy, these results suggest that for a PES of three
dimensions or higher, an IMLS fit incorporating gradients
would be cost effective. We expect for higher dimensional
PESs gradient incorporation will typically be the approach
of choice in IMLS applications. We have also discovered that
for the 1-D cases we studied an approximation to the IMLS
derivatives that ignores the variation of IMLS coefficients
gives a better representation of the true derivative than the
analytical IMLS derivatives. In future work we will examine
gradient incorporation in multi-dimensional applications.
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Appendix

In this appendix we prove that bT(z(i))∂ka(z(i)) = 0 and
derive formal error estimates for IMLS fitting methods. For
convenience all results derived here will be only for IMLS
methods but can be readily generalized to IMLS-D(1)

methods. Several earlier studies [5,23,25] demonstrate that
the standard IMLS normal equation, Eq. (3), has a unique
solution and the resulting fit is interpolative [Vfit(z(i)) =
V (z(i)), where z(i) is any data point] provided that the
constant term is included in the basis (e.g., b1(z) = 1), matrix
B [see Eq. (4)] has full rank, and the weight function has the
following properties: w(r) ≥ 0 and w−1(0) = 0, where
r = ||z − z(i)||. The explicit form of this solution is given by
Eq. (7). In deriving the error estimates for the IMLS method,
it is useful to represent the interpolant in terms of cardinal
functions {ψ0i (z), i = 1, 2, . . . , n}:

Vfit(z) =
n∑

i=1

ψ0i (z)V (z(i)) = ψT
0 (z) f, (A1)

where f is the column vector of the potential energy values at
the data points [see Eq. (6)] and ψ0(z) = (ψ01(z), ψ02(z),
. . ., ψ0n(z))T is the vector of cardinal functions defined as:

ψT
0 (z) = bT(z)S−1

0 (z)BTW(z), (A2)
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as can be seen from Eq. (7). The definitions of the vector
b(z) and matrices S0(z),B, and W(z) were given in Sect. 2.
IMLS cardinal functions minimize the quadratic form

Q(z) =
n∑

i=1

ψ2
0i (z)/w(||z − z(i)||)

= ψT
0 (z) W−1(z)ψ0(z), (A3)

subject to the linear constraints:

n∑

i=1

ψ0i (z)b j (z(i)) = b j (z), j = 1, 2, . . .,m. (A4)

Equivalently, BTψ0(z) = b(z). The solution of this
constrained minimization problem is exactly Eq. (A2), as
can be verified using Lagrange multipliers [24,25]. Conse-
quently, the IMLS interpolant can be constructed by solving
either the IMLS normal equation, Eq. (3), or the constrained
minimization problem formulated by Eqs. (A3) and (A4). An
important property of IMLS fits that follows from Eq. (A4) is
that any linear combination of basis functions is reproduced
exactly by the fit.

The solution of Eqs. (A3), (A4) is very simple at the
data points: ψ0 j (z(l)) = δil and ψ0(z

(l)) = el . Indeed,
one can easily verify that: (1) Q(z(l)) = eT

l W−1(z(l))el =
w−1(0) = 0 is minimal and (2)

∑n
i=1 ψ0i (z(l))b j (z(i)) =∑n

i=1 δilb j (z(i)) = b j (z(l)) for any basis function b j (z) and
any data point z(l).

Using the cardinality property of ψ0 , it is easy to show
that the vector ∂ka is orthogonal to the vector b at the data
points. Using Eqs. (10) and (A2) the product of ∂ka and bT

can be expressed in terms of cardinal functions:

bT(z)∂ka(z) = bT(z)S−1
0 (z)BT ∂kW(z)[f − Ba(z)]

= ψT
0 (z)(∂kW−1(z))W(z)[Ba(z)− f] (A5)

Then at the data points ψ0(z
(i)) = ei and

bT(z(i))∂ka(z(i))

= ∂kw
−1(0)w(0)[bT(z(i))a(z(i))− V (z(i))] = 0, (A6)

because the inverse weight function has a minimum at r =
0(w−1(0) = 0) so that ∂kw

−1(0) = 0, and for any basis that
includes b1(z)=1 the minimization condition {∂E0/∂a1 =0}
ensures that w(0)[bT(z(i))a(z(i))− V (z(i))] = 0.

This analysis can be extended to higher derivative expres-
sions to show that (bT(z(i))∂l∂ka(z(i))) = 0. This extension
is correct as long as higher derivatives of w−1(r) are zero at
r = 0, such as ∂l∂kw

−1(0) = 0 for every k, l = 1, 2, . . ., d.
Whether or not this is true depends on the specific form of
the weight function.

The error in the IMLS approximation can be bounded in
terms of the absolute values of the cardinal functions and the
error of the best local approximation to V (z) by a given basis
set. Provided that V (z) has bounded derivatives up to the

(k + 1)th order, 1-D IMLS fits using kth degree polynomial
basis have the error that is bounded in terms of the local
Lagrange interpolation error analysis:

|V (z)− Vfit(z)| ≤
(

1 +
n∑

i=1

|ψ0i (z)|
)

×
max

(∣∣∣∣
dk+1

V (z)

dz
k+1

∣∣∣∣

)
δk+1

(k + 1)! . (A7)

where δ is the range of data points used to locally define the
fit. If the cutoff weight function [see Eq. (19)] is used, then
δ is bound by the cutoff radius.
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